HCV: Resistance, DAA Failures, and Other Difficult Situations

Eric Lawitz, MD
Clinical Professor of Medicine
University of Texas Health Science Center, San Antonio
Medical Director
Vice President, Scientific and Research Development
The Texas Liver Institute
San Antonio, Texas
Disclosures

- **Speaker Bureau:** AbbVie Inc., Bristol-Myers Squibb Company, Gilead, Janssen Pharmaceuticals, Inc., Merck & Co., Inc.
Note the common root name for each drug class
Resistance

- **RAV**: Resistance Associated Variant
 - Present prior to initiation of therapy
- May have baseline or treatment emergent variants to
 - NS3/4A
 - NS5A
 - NS5B
 - Nucleotide
 - Non-nucleotide
Barriers to Genetic Resistance by Drug Class (GT 1)

<table>
<thead>
<tr>
<th>Drugs in Class</th>
<th>NS3/4A Protease Inhibitors</th>
<th>NS5B Nucleos(t)ide Polymerase Inhibitors</th>
<th>NS5B Nonnucleoside Polymerase Inhibitors</th>
<th>NS5A Inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simeprevir</td>
<td></td>
<td>Sofosbuvir</td>
<td>Dasabuvir</td>
<td>Ledipasvir</td>
</tr>
<tr>
<td>Paritaprevir</td>
<td></td>
<td></td>
<td></td>
<td>Ombitasvir</td>
</tr>
<tr>
<td>Grazoprevir</td>
<td></td>
<td></td>
<td></td>
<td>Daclatasvir</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Elbasvir</td>
</tr>
<tr>
<td>Barrier to resistance</td>
<td>Medium (1a lower barrier than 1b)</td>
<td>High (1a=1b)</td>
<td>Very low (1a lower barrier than 1b)</td>
<td>Low (1a lower barrier than 1b)</td>
</tr>
<tr>
<td>Comments</td>
<td>2nd generation PIs have higher barrier, pangenotypic</td>
<td>Single target Active site</td>
<td>Allosteric Many targets</td>
<td>Multiple antiviral Mechanism of Action</td>
</tr>
</tbody>
</table>

- RAVs to one drug are generally cross resistant to other drugs within a class, although this is not always the case
- Viral fitness of RAVs effects their persistence after discontinuation of therapy

Fitness: Resistant Variants Are Present Before and Can Be Selected During Treatment

- HCV is a mixture of related but distinct populations of virions in each patient\(^1\)
- Most resistant variants are unfit and may be undetectable prior to therapy\(^2,3\)

![Diagram](https://via.placeholder.com/150)

Antiviral therapy eliminates sensitive variants. Resistant variants expand.

NS5A RAVs:
Are Some RAVs More Impactful than Others?
Does GT 1a vs GT 1b Matter?
Baseline NS5A RAVs in DAA-Naïve Patients

- Baseline RAVs in GT1a (Q30, L31, and Y93) have the largest clinical impact
- Y93H in GT1b most common but little clinical impact
- Y93H in GT1b only ~100 fold-change while in GT1a ~10,000 fold shift

The subtype background has much to do with whether the RAV has a clinical impact

Broad Cross-Resistance with "Early Generation" NS5As

<table>
<thead>
<tr>
<th>Fold-change</th>
<th>1a</th>
<th>1b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M28T Q30R L31M/V Y93H/N L31V Y93H/N</td>
<td></td>
</tr>
<tr>
<td>Ledipasvir</td>
<td>20x >100x >100x/ >100x >1,000x/ >10,000</td>
<td>>100x/--</td>
</tr>
<tr>
<td>Ombitasvir</td>
<td>>1000x >100x <3x >10,000x/ <10x 20x/50x</td>
<td></td>
</tr>
<tr>
<td>Daclatasvir</td>
<td>>100x >1000x >100x/ >1000x >1,000x/ >10,000x</td>
<td><10x 20x/50x</td>
</tr>
<tr>
<td>Elbasvir</td>
<td>20x >100x >10x >1,000x/ <10x >100x/--</td>
<td></td>
</tr>
<tr>
<td>Velpatasvir</td>
<td><10x <3x 20x/50x >100x/ >1000x</td>
<td><3x <3x--</td>
</tr>
<tr>
<td>ACH-3102</td>
<td>30x 20x <10x >100x/ >100x</td>
<td><3x <3x/ <3x</td>
</tr>
<tr>
<td>ABT-530</td>
<td><3x <3x <3x <10x/ <10x</td>
<td><3x <3x/ <3x</td>
</tr>
<tr>
<td>MK-8408</td>
<td><10x <10x <10x <10x <10x</td>
<td><10x</td>
</tr>
</tbody>
</table>

LDV/SOF ± RBV: Prevalence of NS5A Variants at Baseline and Impact on SVR

- Pooled data from GT1 patients with compensated cirrhosis who were treated with LDV/SOF ± RBV
- Deep sequencing (detection limit, 1%)
- 513 patients treated of whom 18 relapsed
P values represent differences in SVR12 rates between patients with and without NS5A RAVs. Presence of RAVs was evaluated by deep sequencing with assay cutoff of 1%.

LDV/SOF ± RBV: SVR12 in GT 1 Patients with Cirrhosis ± Baseline NS5A RAVs

LDV/SOF: Does Duration Matter? (12 vs 24 Weeks)

LDV/SOF x 12 Weeks: Does RBV Matter? (+/- RBV)

LDV/SOF: What About Longer Duration + RBV?

12 Weeks
- **LDV/SOF**
 - With RAVs: 23/26 (88%)
 - No RAVs: 86/91 (95%)

24 Weeks
- **LDV/SOF+RBV**
 - With RAVs: 14/14 (100%)
 - No RAVs: 44/44 (100%)

LDV/SOF ± RBV: SVR12 in GT 1 Patients with Cirrhosis ± Baseline NS5A RAVs

<table>
<thead>
<tr>
<th></th>
<th>With RAVs</th>
<th>No RAVs</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDV/SOF 12 Weeks</td>
<td>88/23</td>
<td>95/66</td>
</tr>
<tr>
<td>LDV/SOF + RBV 12 Weeks</td>
<td>94/32</td>
<td>97/64</td>
</tr>
<tr>
<td>LDV/SOF 24 Weeks</td>
<td>85/17</td>
<td>100/113</td>
</tr>
<tr>
<td>LDV/SOF + RBV 24 Weeks</td>
<td>100/100</td>
<td>100/100</td>
</tr>
</tbody>
</table>

Only baseline HCV RNA >800,000 IU/mL and presence of baseline NS5A RAVs were identified as significant predictors of SVR12.

- Significant impact observed ONLY in patients with both factors
- Neither of these factors predicted SVR12 in GT1b treatment-naive patients
Among GT1a Treatment-naïve/Prior Relapsers with Baseline NS5A RAVS, the Efficacy of GZR/EBR (12 Weeks, No RBV) Varies from 58% to 91%, Depending on Methodology

Among GT1a PEG/RBV Non-responders With Baseline NS5A RAVs, the Efficacy of GZR/EBR (16/18 Weeks, With RBV) is High Regardless of Methodology

Impact of RAVs on Grazoprevir/Elbasvir Approved Label

<table>
<thead>
<tr>
<th>Patient Population</th>
<th>Treatment</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotype 1a: Treatment-naive or PegIFN/RBV-experienced* without baseline NS5A polymorphisms†</td>
<td>ZEPATIER</td>
<td>12 weeks</td>
</tr>
<tr>
<td>Genotype 1a: Treatment-naive or PegIFN/RBV-experienced* with baseline NS5A polymorphisms†</td>
<td>ZEPATIER + ribavirin</td>
<td>16 weeks</td>
</tr>
<tr>
<td>Genotype 1b: Treatment-naive or PegIFN/RBV-experienced*</td>
<td>ZEPATIER</td>
<td>12 weeks</td>
</tr>
<tr>
<td>Genotype 1a or 1b: PegIFN/RBV/PI-experienced‡</td>
<td>ZEPATIER + ribavirin</td>
<td>12 weeks</td>
</tr>
<tr>
<td>Genotype 4: Treatment-naive</td>
<td>ZEPATIER</td>
<td>12 weeks</td>
</tr>
<tr>
<td>Genotype 4: PegIFN/RBV-experienced*</td>
<td>ZEPATIER + ribavirin</td>
<td>16 weeks</td>
</tr>
</tbody>
</table>

*Peginterferon alfa + ribavirin.
†Polymorphisms at amino acid positions 28, 30, 31, or 93.
‡Peginterferon alfa + ribavirin + HCV NS3/4A protease inhibitor.
PRV/r/OMV + DSV + RBV (12 weeks in non-cirrhotics and 24 weeks in cirrhotics)

Figure 2. Impact of Baseline GT1a NS5A Class RAVs and Ombitasvir-specific RAVs on SVR Rate

Similar SVR rates were observed irrespective of the presence or absence of baseline variants

Sulkowski M et al., CROI 2016, Abstract 539LB
Do NS5A RAVs Persist After NS5A Treatment Failure?
Persistence of NS3, NS5A and NS5B Treatment Emergent Variants After Treatment with Ombitasvir/Paritaprevir/r + Dasabuvir ± RBV

- Pooled patients with virologic failure from all clinical trials (n=2510)
 - 67 patients with HCV genotype 1a
 - 7 patients with HCV genotype 1b (no long-term follow-up reported due to small numbers)

<table>
<thead>
<tr>
<th></th>
<th>Post-treatment 24 Weeks</th>
<th>Post-treatment 48 Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS3/4A (any)</td>
<td>31/67 (46%)</td>
<td>5/57 (9%)</td>
</tr>
<tr>
<td>NS5A (any)</td>
<td>68/70 (97%)</td>
<td>49/51 (96%)</td>
</tr>
<tr>
<td>NS5B (non-nuc)</td>
<td>33/44 (75%)</td>
<td>20/35 (57%)</td>
</tr>
</tbody>
</table>

Long-Term Persistence of NS5A Variants After Treatment with LDV

- NS5A RAVs in patients who failed LDV treatment without SOF
- Positions 24, 28, 30, 31, 32, 58, 93 that confer >2.5-fold reduced susceptibility to LDV in vitro were included

Almost All Patients Who Failed Had Detectable NS5A RAVs at Treatment Failure

What Does AASLD/IDSA Guidance Document Recommend for NS5A Treatment-Experienced Patients??

- If previous failure of any NS5A inhibitor and non-cirrhotic, deferral preferred pending further data

- If cirrhosis or other need for urgent treatment, test for NS3 and NS5A RAVs and tailor retreatment regimen to results

- Applies to GT1a and 1b HCV infection

- Also applies to SOF + SMV treatment-experienced patients
Can we successfully retreat protease inhibitor (boceprevir, telaprevir or simeprevir) + PEG/RBV experienced patients?
Patients Who Previously Failed Boceprevir or Telaprevir + PEG/RBV Respond to LDV/SOF (ION-2)

Treatment History
- Failure of PEG/RBV
- Failure of PI + PEG/RBV

* Note the lower SVR rate with 12 weeks

Patients Who Previously Failed Boceprevir or Telaprevir + PEG/RBV Respond to DCV/SOF

- Another combination of DCV (NS5A inhibitor) + SOF (nuc polymerase inhibitor) highly efficacious in GT 1 PI failures
- RBV not necessary
- 12 weeks is equally efficacious

What About a Second Generation Protease Inhibitor + NS5A Inhibitor for Prior PI + PEG/RBV Failures (C-SALVAGE)?

- Grazoprevir (GZR) (protease inhibitor) + elbasvir (EBR) (NS5A inhibitor) + RBV
- 12 week treatment duration
- 43% cirrhotic

GT1 Patients who Failed Prior Protease Inhibitor (NS3) + PEG-IFN Regimen

No Cirrhosis
- LDV/SOF x 12 weeks
- DCV + SOF x 12 weeks
- EBR/GZR + RBV x 12 weeks* (*pts with BL high fold-change NS5A RAVs should receive 16 weeks)

Compensated Cirrhosis
- LDV/SOF + RBV x 12 weeks
- LDV/SOF x 24 weeks
- DCV + SOF ± RBV x 24 weeks
- EBR/GZR + RBV x 12 weeks* (*pts with BL high fold-change NS5A RAVs should receive 16 weeks)

*In patients with no high fold-change NS5A RAVs detected (Polymorphisms at amino acid positions 28, 30, 31 or 93).

www.hcvguidelines.org; accessed March 6, 2016.
What Is on the Horizon?
Current and Next Generation NS3 Protease Inhibitors: Activity Against Various Subtypes *in vitro* Can Predict Lower Efficacy and Risk of RAVs

<table>
<thead>
<tr>
<th>Protease Inhibitor</th>
<th>Stable HCV Replicon EC_{50} (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GT1a</td>
</tr>
<tr>
<td>ABT-493</td>
<td>0.85</td>
</tr>
<tr>
<td>Paritaprevir</td>
<td>1.0</td>
</tr>
<tr>
<td>Simeprevir(^1,2)</td>
<td>13</td>
</tr>
<tr>
<td>Asunaprevir(^3)</td>
<td>4.0</td>
</tr>
<tr>
<td>Grazoprevir</td>
<td>0.38</td>
</tr>
<tr>
<td>GS-9451(^4)</td>
<td>13</td>
</tr>
<tr>
<td>GS-9857(^5)</td>
<td>3.9</td>
</tr>
</tbody>
</table>

\(^a\)Study conducted at Southern Research Institute.

NA, not available.

Current and Next Generation NS5A Inhibitors: Activity Against Various Subtypes *in vitro* Can Predict Lower Efficacy and Risk of RAVs

<table>
<thead>
<tr>
<th>NS5A Inhibitor</th>
<th>Stable HCV Replicon EC₅₀ (pM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GT1a</td>
</tr>
<tr>
<td>ABT-530</td>
<td>2</td>
</tr>
<tr>
<td>Ombitasvir</td>
<td>14</td>
</tr>
<tr>
<td>Daclatasvir¹</td>
<td>22</td>
</tr>
<tr>
<td>Ledipasvir²</td>
<td>31</td>
</tr>
<tr>
<td>Velpatasvir³</td>
<td>12</td>
</tr>
<tr>
<td>Elbasvir⁴</td>
<td>4</td>
</tr>
<tr>
<td>MK-8408⁵</td>
<td>1</td>
</tr>
<tr>
<td>ACH-3102⁶</td>
<td>26</td>
</tr>
<tr>
<td>IDX719⁷</td>
<td>8</td>
</tr>
</tbody>
</table>

*ᵃStudy conducted at Southern Research Institute.
NA, not available.

NS3, NS5A and non-nuc polymerase inhibitor NS5B RAVs pre-exist at different frequencies in treatment-naïve patients

- Negative predictive factors important
 - GT1a
 - Cirrhosis
 - RAVs with high level resistance
- Addition of RBV and extending duration
- Future regimens may or may not have this issue

New DAA combinations are effective for first generation PI + PEG/RBV failures